curva loxodrômica - ορισμός. Τι είναι το curva loxodrômica
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι curva loxodrômica - ορισμός

Loxodrómica; Curva loxodrómica; Loxodrómia
  • Loxodromia na esfera

loxodromia         
(cs) sf (loxo+dromo2+ia1)
1 Curva traçada na superfície de uma esfera e que corta todos os meridianos sob o mesmo ângulo agudo ou obtuso.
2 Náut Linha de navegação que corta todos os meridianos sob o mesmo ângulo agudo ou obtuso e é representada nas cartas marítimas por uma linha reta.
Loxodromia         
f. Náut.
Linha de navegação, que corta todos os meridianos, sob o mesmo ângulo, e que, nas cartas marítimas, é representada por uma linha recta.
Curva, traçada na superficie de uma esphera, cortando todos os meridianos, sob o mesmo ângulo.
(Do gr. loxos + dromos)
Loxodromia         
Loxodromia é a linha que, à superfície da Terra, faz um ângulo constante com todos os meridianos. Tal linha, cuja direcção geográfica (ou azimute) é constante com os meridianos, é resultado do erro original quando se quer resumir num plano o que está distribuído em vários.

Βικιπαίδεια

Loxodromia

Loxodromia é a linha que, à superfície da Terra, faz um ângulo constante com todos os meridianos. Tal linha, cuja direcção geográfica (ou azimute) é constante com os meridianos, é resultado do erro original quando se quer resumir num plano o que está distribuído em vários. Trata-se de uma linha recta que, quando assente numa superfície esférica torsa (como o corte da casca de laranja) tem tendência para espiralar-se em direcção aos polos. Este facto foi pela primeira vez reconhecido pelo matemático português Pedro Nunes, no "Tratado em Defensam da Carta de Marear", incluído na sua obra O Tratado da Esfera, de 1537.

Muito embora não constitua o caminho mais curto entre dois pontos, a loxodromia é o tipo de trajecto mais simples e normalmente empregue em mapas rodoviários ou marítimos, desde que se avistem acidentes geográficos como referência. Seguir a loxodromia é como seguir numa rua contornando os quarteirões.

A razão está no facto da orientação dos navios e aeronaves se realizar com base nas cartas náuticas, fornecidas por projecções azimutais, bússolas magnéticas e giroscópicas sobre as coordenadas deformadas, que atendem o sentido de orientação da terra projetada num mapa plano.

O acréscimo de distância decorrente do emprego da loxodromia é normalmente desprezável em pequenos percursos, o que não acontece em longos trajectos em torno do planeta, quando se pretende seguir a projecção de Mercator do início ao fim da rota. O navegante que partir do Estreito de Magalhães em direcção à Austrália, por exemplo, se desprezar a ortodromia, corre o risco de cumprir a rota no mar do norte do Japão em vez de chegar ao sul, em águas da Nova Zelândia. Nestes casos, o trajecto planeado segundo a ortodromia é decomposto em pequenos segmentos de loxodromia - cada um dos quais com rumo corrigido até completar a jornada.

Na projecção de Mercator as loxodromias são representadas por segmentos de recta.